On Fréchet differentiability of Lipschitz maps between Banach spaces
نویسندگان
چکیده
منابع مشابه
On Fréchet differentiability of Lipschitz maps between Banach spaces
A well-known open question is whether every countable collection of Lipschitz functions on a Banach space X with separable dual has a common point of Fréchet differentiability. We show that the answer is positive for some infinite-dimensional X. Previously, even for collections consisting of two functions this has been known for finite-dimensional X only (although for one function the answer is...
متن کاملOn the Differentiability of Lipschitz Maps from Metric Measure Spaces to Banach Spaces
We consider metric measure spaces satisfing a doubling condition and a Poincaré inequality in the upper gradient sense. We show that the results of [Che99] on differentiability of real valued Lipschitz functions and the resulting bi-Lipschitz nonembedding theorems for finite dimensional vector space targets extend to Banach space targets having what we term a good finite dimensional approximati...
متن کاملDifferentiability of Lipschitz Maps from Metric Measure Spaces to Banach Spaces with the Radon Nikodym Property
In this paper we prove the differentiability of Lipschitz maps X → V , where X is a complete metric measure space satisfying a doubling condition and a Poincaré inequality, and V denotes a Banach space with the Radon Nikodym Property (RNP). The proof depends on a new characterization of the differentiable structure on such metric measure spaces, in terms of directional derivatives in the direct...
متن کاملMetric differentiability of Lipschitz maps defined on Wiener spaces
This note is devoted to the differentiability properties of H-Lipschitz maps defined on abstract Wiener spaces and with values in metric spaces, so we start by recalling some basic definitions related to the Wiener space structure. Let (E, ‖ · ‖) be a separable Banach space endowed with a Gaussian measure γ. Recall that a Gaussian measure γ on E equipped with its Borel σ−algebra B is a probabil...
متن کاملAlmost Fréchet differentiability of Lipschitz mappings between infinite dimensional Banach spaces
We give several sufficient conditions on a pair of Banach spaces X and Y under which each Lipschitz mapping from a domain in X to Y has, for every ǫ > 0, a point of ǫ-Fréchet differentiability. Most of these conditions are stated in terms of the moduli of asymptotic smoothness and convexity, notions which appeared in the literature under a variety of names. We prove, for example, that for ∞ > r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of Mathematics
سال: 2003
ISSN: 0003-486X
DOI: 10.4007/annals.2003.157.257