On Fréchet differentiability of Lipschitz maps between Banach spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Fréchet differentiability of Lipschitz maps between Banach spaces

A well-known open question is whether every countable collection of Lipschitz functions on a Banach space X with separable dual has a common point of Fréchet differentiability. We show that the answer is positive for some infinite-dimensional X. Previously, even for collections consisting of two functions this has been known for finite-dimensional X only (although for one function the answer is...

متن کامل

On the Differentiability of Lipschitz Maps from Metric Measure Spaces to Banach Spaces

We consider metric measure spaces satisfing a doubling condition and a Poincaré inequality in the upper gradient sense. We show that the results of [Che99] on differentiability of real valued Lipschitz functions and the resulting bi-Lipschitz nonembedding theorems for finite dimensional vector space targets extend to Banach space targets having what we term a good finite dimensional approximati...

متن کامل

Differentiability of Lipschitz Maps from Metric Measure Spaces to Banach Spaces with the Radon Nikodym Property

In this paper we prove the differentiability of Lipschitz maps X → V , where X is a complete metric measure space satisfying a doubling condition and a Poincaré inequality, and V denotes a Banach space with the Radon Nikodym Property (RNP). The proof depends on a new characterization of the differentiable structure on such metric measure spaces, in terms of directional derivatives in the direct...

متن کامل

Metric differentiability of Lipschitz maps defined on Wiener spaces

This note is devoted to the differentiability properties of H-Lipschitz maps defined on abstract Wiener spaces and with values in metric spaces, so we start by recalling some basic definitions related to the Wiener space structure. Let (E, ‖ · ‖) be a separable Banach space endowed with a Gaussian measure γ. Recall that a Gaussian measure γ on E equipped with its Borel σ−algebra B is a probabil...

متن کامل

Almost Fréchet differentiability of Lipschitz mappings between infinite dimensional Banach spaces

We give several sufficient conditions on a pair of Banach spaces X and Y under which each Lipschitz mapping from a domain in X to Y has, for every ǫ > 0, a point of ǫ-Fréchet differentiability. Most of these conditions are stated in terms of the moduli of asymptotic smoothness and convexity, notions which appeared in the literature under a variety of names. We prove, for example, that for ∞ > r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Mathematics

سال: 2003

ISSN: 0003-486X

DOI: 10.4007/annals.2003.157.257